China supplier Agriculture Pto Drive Shaft Massey Ferguson Tractor Price for Agriculture

Product Description

HEADLINE Agriculture PTO drive shaft massey ferguson tractor price for Agriculture
PART NAME Drive Shaft
PART NUMBER HGMS3,3418898, 36 0571 3, 3965006
Subishi 4D30, 4D31, 4D32, 4D33, 4D34, 4D34T, 4D35, 4D36, 4D55, 4D56, 4D56T, 4DR5, 4D13,4G14, 4G15, 4G18, 4G24, 4G32, 4G54, 4G63, 4G64, 4G93, 4G94, 4M40, 6D14, 6D15, 6D14,6D15, 6D16, 6D16T, 6D17, 6D20, 6D22, 6D24, 6G72, 6G74, 8DC9, S4E, S4F, S4Q, S4S,S6E, S6S
Isuzu 3LB1, 4BA1, 4BB1, 4BC2, 4BD1, 4BE1,4BG1, 4HE1, 4HF1, 4HG1, 4HK1, 4JA1, 4JB1, 4JG1, 
4JG2, 4JJ1, 4JH1, 4LE1, 4LE2, 4ZA1, 4ZD1, 6BB1, 6BD1, 6BD1, 6BD1T, 6BG1, 6BG1T, 6HE1,6HH1, 6HK1, 6QA1, 6SD1, 6WG1, 10PC1, 12PD1, C190, C240, DH100, G200
Toyota 1DZ, 1Z, 2Z, 11Z, 12Z, 13Z, 14Z, 2H, 2J, 3Y, 4Y, 3K, 4K, 5K, 3B, 13B, 14B, 15B, 2R, 12R, 22R, 2L, 2LT, 3L, 5L, 2E, 3E, 4E, 5E, 1AZ, 2AZ, 1KD, 2KD, 1KZ, 2KZ, 1RZ, 2RZ, 1TR, 2TR, 1HZ, 1NZ, 2NZ
Nissan BD30, FD6, FE6, FD42, H15, H20, H25, K21, K25, ND6, NE6, PD6, PE6, QD32, RD8, RE8, RG8, RF8, SD25, TD25, TD27, TD42, YD25, ZD30
 Kia & Mazda J2, J3, JS, JT, F2, F6, FE501, R2, SH, WL
Others 4D92E, 4D94E, 4D98E, 4D94LE, 4D95, 4D105, 4D107, 4D120, 6D95, 6D102, 6D105, 6D107, 6D108, 6D110, 6D125, 6D114, 6D140, 6D155, 6D170,4D88, 3TNE84, 3TNE88, 3TNV84, 3TNV88, 4TNE84, 4ETN88, 4TNV84, 4TNV88, 4TNE92, 4TNE94, 4TNE98, 4TNV94, 4TNV98, 4TNV106,3D84, 3D88, 4D84, 4BT, 6BT, 6CT, A2300, B3.3, K19, K38, NH220, NT855, QSB4.5, 6L,C6.4, C7, C9, C15, 3006, 3304, 3306, 3406, S4KT, S6KT,EM100, EP100, J05C, J05E, J08C, J08E, K13C, P11C, W04C, W04D, W04E, W06D, W06E,EF550, EF750, EH700, H06C, H07C, H07D, EK100

  Hiugong always persist in the principle of “Integrity Based, Customers Top”, giving great care to the overall processes such as from production, quoting, purchasing to packing and transporting. What we are pursuing is not just profit margin, but rather a lasting CHINAMFG partnership with you. Our professional team serve to customers from all over the worlds. We adhere to the concept of “Quality first, create the best” is increasing the value to customers and partners. Our key advantage over other is our attitude toward quality. We know what′s right, and not what just good enough. This is reflected in our quick response, technical analyze of drawings, proactive approach in passing on our production experience to help clients reduce cost and improve designs. In Foreign Trade Department we also cooperate with the best and most experienced factories with approved ISO 9001 in China. We work closely with these factories to offer quick delivery and quality service to our customers. We can help you stock a parts warehouse with quality factory parts for dealer service after the sale. If you are a distributor or dealer, please ask about our program to help build a parts warehouse for your company. CHINAMFG have a close relationship with these factories and can supply mixed product shipping if necessary. 

Hiugong’s Cooperated Brands include: Sany, Zoomlion, Liugong, Lonking, Shantui, XGMA, Sunward, Lovol, Sem, Yuchai, Xihu (West Lake) Dis.n, Weichai, SDLG, YTO. Caterpillar, KOMATSU, HITACHI, CHINAMFG Construction Equipment, Liebherr, DOOSAN, John Deere, JCB, Terex, Sandvik, Wirtgen, Kobelco, Hyundai.

 

Certification: ISO9001
Standard Component: Standard Component
Technics: Forging
Material: Iron
Type: Connecting Rod
Original Numbers: 3066881 3066882 3066877 207770 205750 3060610
Samples:
US$ 55/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

How do manufacturers ensure the compatibility of PTO shafts with different equipment?

Manufacturers employ various measures to ensure the compatibility of PTO (Power Take-Off) shafts with different equipment. Compatibility is crucial to ensure that PTO shafts can effectively transfer power from the power source to the driven machinery without compromising performance, safety, or ease of use. Here’s a detailed explanation of how manufacturers ensure compatibility:

1. Standardization: PTO shafts are designed and manufactured based on standardized specifications. These specifications outline the essential parameters such as shaft dimensions, spline sizes, torque ratings, and safety requirements. By adhering to standardized designs, manufacturers ensure that PTO shafts are compatible with a wide range of equipment that meets the same standards. Standardization allows for interchangeability, meaning that PTO shafts from one manufacturer can be used with equipment from another manufacturer as long as they conform to the same specifications.

2. Collaboration with Equipment Manufacturers: PTO shaft manufacturers often collaborate closely with equipment manufacturers to ensure compatibility. They work together to understand the specific requirements of the equipment and design PTO shafts that seamlessly integrate with the machinery. This collaboration may involve sharing technical specifications, conducting joint testing, and exchanging feedback. By working in partnership, manufacturers can address any compatibility issues early in the design and development process, resulting in PTO shafts that are tailored to the equipment’s needs.

3. Customization Options: PTO shaft manufacturers offer customization options to accommodate different equipment configurations. They provide flexibility in terms of shaft length, spline sizes, yoke designs, and coupling mechanisms. Equipment manufacturers can specify the required parameters, and the PTO shafts can be customized accordingly. This ensures that the PTO shafts precisely match the equipment’s power input/output requirements and connection methods, guaranteeing compatibility and efficient power transfer.

4. Testing and Validation: Manufacturers conduct rigorous testing and validation processes to ensure the compatibility and performance of PTO shafts. They subject the shafts to various tests, including torque testing, rotational speed testing, and durability testing. These tests verify that the PTO shafts can handle the expected power loads and operating conditions without failure. By validating the performance of the PTO shafts, manufacturers can ensure that they are compatible with a wide range of equipment and can reliably transfer power under different operating scenarios.

5. Compliance with Industry Standards: PTO shaft manufacturers adhere to industry standards and regulations to ensure compatibility. Organizations such as the American Society of Agricultural and Biological Engineers (ASABE) establish safety and performance standards for PTO shafts. Manufacturers design and produce their shafts in accordance with these standards, ensuring that their products meet the necessary requirements for compatibility and safety. Compliance with industry standards provides assurance to equipment manufacturers and end-users that the PTO shafts are compatible and suitable for use with different equipment.

6. Documentation and Guidelines: Manufacturers provide comprehensive documentation and guidelines to assist equipment manufacturers and end-users in ensuring compatibility. This documentation includes technical specifications, installation instructions, maintenance guidelines, and safety recommendations. The documentation helps equipment manufacturers select the appropriate PTO shaft for their equipment and provides guidance on proper installation and use. By following the manufacturer’s guidelines, equipment manufacturers can ensure compatibility and optimize the performance of the PTO shafts.

7. Ongoing Research and Development: PTO shaft manufacturers continuously invest in research and development to enhance compatibility with different equipment. They stay updated with industry trends, technological advancements, and evolving equipment requirements. This ongoing research and development enable manufacturers to improve the design, materials, and features of PTO shafts, ensuring compatibility with the latest equipment innovations and addressing any compatibility challenges that may arise.

By employing standardization, collaborating with equipment manufacturers, offering customization options, conducting thorough testing, complying with industry standards, providing documentation and guidelines, and investing in research and development, manufacturers ensure the compatibility of PTO shafts with different equipment. This compatibility allows for seamless integration, efficient power transfer, and optimal performance across a wide range of machinery and equipment in various industries.

pto shaft

Are there any limitations or disadvantages associated with PTO shafts?

While PTO (Power Take-Off) shafts offer numerous advantages in terms of power transfer and versatility, they also have certain limitations and disadvantages. It’s important to consider these factors when using PTO shafts to ensure safe and efficient operation. Here’s a detailed explanation of some limitations and disadvantages associated with PTO shafts:

1. Safety Hazards: One of the primary concerns with PTO shafts is the potential for safety hazards. PTO shafts rotate at high speeds and can pose a significant risk if not properly guarded or handled. Accidental contact with an exposed or inadequately shielded PTO shaft can result in severe injuries, including entanglement, amputation, or even fatalities. It is crucial to follow safety guidelines, implement proper guarding, and ensure that operators are well-trained on safe handling practices to mitigate these risks.

2. Maintenance and Lubrication: PTO shafts require regular maintenance and lubrication to ensure optimal performance and longevity. The moving parts, such as universal joints and splines, need to be inspected, cleaned, and lubricated at recommended intervals. Neglecting maintenance can lead to premature wear, decreased efficiency, and potential failures. Proper maintenance practices, including regular inspections and timely lubrication, are essential to mitigate these issues.

3. Alignment and Angles: PTO shafts rely on proper alignment and angles to ensure efficient power transfer. Misalignment or excessive angles between the power source and driven machinery can cause increased wear and strain on the components, leading to premature failure. Ensuring proper alignment and angle adjustment, using adjustable sliding yokes or other means, is important to prevent excessive stress on the PTO shaft and associated equipment.

4. Length Limitations: PTO shafts have limitations on their maximum and minimum length due to engineering constraints. The telescoping design allows for some adjustment, but there is a practical limit to how much the shaft can extend or retract. If the distance between the power source and driven machinery exceeds the maximum or falls below the minimum length of the PTO shaft, alternative solutions or modifications may be required. In some cases, additional components such as drive shaft extensions or gearboxes may be necessary to bridge the distance.

5. Compatibility: While manufacturers strive to ensure compatibility, there can still be challenges in finding the right PTO shaft for specific equipment configurations. Equipment may have unique requirements in terms of spline sizes, torque ratings, or connection methods that may not be readily available or compatible with off-the-shelf PTO shafts. Customization may be required to address these compatibility issues, which can result in increased costs or lead times.

6. Noise and Vibrations: PTO shafts in operation can generate significant noise and vibrations, especially at higher speeds. This can be a nuisance for operators and may require additional measures to reduce noise levels or dampen vibrations. Excessive vibrations can also affect the overall performance and lifespan of the PTO shaft and connected equipment. Implementing vibration dampeners or using flexible couplings can help mitigate these issues.

7. Power Limits: PTO shafts have specific power limits based on their design, materials, and components. Exceeding these power limits can lead to premature wear, component failures, or even shaft breakage. It is crucial to understand and adhere to the recommended power ratings for PTO shafts to ensure safe and reliable operation. In some cases, upgrading to a higher-capacity PTO shaft or implementing additional power transmission components may be necessary to accommodate higher power requirements.

8. Complex Installation and Removal: Installing and removing PTO shafts can be a complex process, especially in confined spaces or when dealing with heavy equipment. It may require aligning splines, engaging couplings, and securing locking mechanisms. Improper installation or removal techniques can lead to damage to the shaft or associated equipment. Proper training, handling equipment, and following manufacturer guidelines are essential to simplify and ensure the safe installation and removal of PTO shafts.

Despite these limitations and disadvantages, PTO shafts remain widely used and valuable components for power transfer in various industries. By addressing these considerations and implementing proper safety measures, maintenance practices, and alignment procedures, the potential drawbacks of PTO shafts can be effectively mitigated, allowing for safe and efficient operation.

pto shaft

How do PTO shafts handle variations in speed and torque requirements?

PTO shafts (Power Take-Off shafts) are designed to handle variations in speed and torque requirements between the power source (such as a tractor or engine) and the driven machinery or equipment. They incorporate various mechanisms and components to ensure efficient power transmission while accommodating the different speed and torque demands. Here’s a detailed explanation of how PTO shafts handle variations in speed and torque requirements:

1. Gearbox Systems: PTO shafts often incorporate gearbox systems to match the speed and torque requirements between the power source and the driven machinery. Gearboxes allow for speed reduction or increase and can also change the rotational direction if necessary. By using different gear ratios, PTO shafts can adapt the rotational speed and torque output to suit the specific requirements of the driven equipment. Gearbox systems enable PTO shafts to provide the necessary power and speed compatibility between the power source and the machinery they drive.

2. Shear Bolt Mechanisms: Some PTO shafts, particularly in applications where sudden overloads or shock loads are expected, use shear bolt mechanisms. These mechanisms are designed to protect the driveline components from damage by disconnecting the PTO shaft in case of excessive torque or sudden resistance. Shear bolts are designed to break at a specific torque threshold, ensuring that the PTO shaft separates before the driveline components suffer damage. By incorporating shear bolt mechanisms, PTO shafts can handle variations in torque requirements and provide a safety feature to protect the equipment.

3. Friction Clutches: PTO shafts may incorporate friction clutch systems to enable smooth engagement and disengagement of power transfer. Friction clutches use a disc and pressure plate mechanism to control the transmission of power. Operators can gradually engage or disengage the power transfer by adjusting the pressure on the friction disc. This feature allows for precise control over torque transmission, accommodating variations in torque requirements while minimizing shock loads on the driveline components. Friction clutches are commonly used in applications where smooth power engagement is essential, such as in hydraulic pumps, generators, and industrial mixers.

4. Constant Velocity (CV) Joints: In cases where the driven machinery requires a significant range of movement or articulation, PTO shafts may incorporate Constant Velocity (CV) joints. CV joints allow the PTO shaft to accommodate misalignment and angular variations without affecting power transmission. These joints provide a smooth and constant power transfer even when the driven machinery is at an angle relative to the power source. CV joints are commonly used in applications such as articulated loaders, telescopic handlers, and self-propelled sprayers, where the machinery requires flexibility and a wide range of movement.

5. Telescopic Designs: Some PTO shafts feature telescopic designs that allow for length adjustment. These shafts consist of two or more concentric shafts that slide within each other, providing the ability to extend or retract the PTO shaft as needed. Telescopic designs accommodate variations in the distance between the power source and the driven machinery. By adjusting the length of the PTO shaft, operators can ensure proper power transmission without the risk of the shaft dragging on the ground or being too short to reach the equipment. Telescopic PTO shafts are commonly used in applications where the distance between the power source and the implement varies, such as in front-mounted implements, snow blowers, and self-loading wagons.

By incorporating these mechanisms and designs, PTO shafts can handle variations in speed and torque requirements effectively. They provide the necessary flexibility, safety, and control to ensure efficient power transmission between the power source and the driven machinery. PTO shafts play a critical role in adapting power to meet the specific needs of various equipment and applications.

China supplier Agriculture Pto Drive Shaft Massey Ferguson Tractor Price for Agriculture  China supplier Agriculture Pto Drive Shaft Massey Ferguson Tractor Price for Agriculture
editor by CX 2023-09-19